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In hyperbolic systems, transient chaos is associated with an underlying chaotic 
saddle in phase space. The structure of the chaotic saddle of a class of piecewise 
linear, area-preserving, two-dimensional maps with overall constant Lyapunov 
exponents has been observed by a scattering method. The free energy obtained 
in this way displays a "phase transition" at fl < 0 in spite of the fact that no phase 
transition occurs in the free energy dedcued from the spectrum of Lyapunov 
exponents. This is possible because pruning introduces a second effective scaling 
exponent by creating, at each level of the approximation, particular small pieces 
in the incomplete Cantor set approximating the saddle. The second scaling arises 
for a subset of values of the control parameter that is dense in the parameter 
interval. 

KEY WORDS: Thermodynamic formalism: phase transition; chaotic scatter- 
ing; piecewise linear maps; bifurcation. 

1. I N T R O D U C T I O N  

Inva r i an t  sets of chaot ic  d y n a mi c a l  systems are general ly  mult ifractals .  
They  can  be character ized by their  mul t i f racta l  proper t ies  (probabi l i t ies) ,  
their h ierarchy of length  scal ing exponen t s  (geometr ical  propert ies) ,  and  
their spec t rum of L y a p u n o v  exponen t s  (dynamica l  propert ies) .  In  the case 
of hyperbol ic  systems, these quant i t i es  are related to each o ther  by 
relat ions fol lowing from the t h e r m o d y n a m i c  formalism. I~ 

Chao t i c  i nva r i an t  sets are created by homocl in ic  or  heterocl inic  inter-  
sections of s table  an d  uns tab le  manifolds .  If all b ranches  of the stable 
bundle  intersect  all b ranches  of the uns tab le  bundle ,  the inva r i an t  set is 
topological ly  equ iva len t  to a comple te  t wo -d i mens iona l  (2D)  C a n t o r  set. 
U n d e r  var ia t ion  of an  external  con t ro l  parameter ,  the grid of in tersect ions  
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frequently become incomplete. Consequently, parts of the invariant set get 
lost. This phenomenon is called "pruning." 

Due to time reversal symmetry in Hamiltonian systems, the bundles of 
stable and unstable manifolds are equivalent, and their partial fractal 
properties are the same/2~ In order to know the structure of the invariant 
set, it is sufficient to study the structure of the stable manifolds, i.e., to 
investigate orbits only for t ~ oo. The properties of the invariant set are 
reflected in the behavior of transient orbits. A possible appearance of 
transient chaos in Hamiltonian systems is chaotic scattering. Numerical 
"scattering experiments" are an efficient tool for investigating the structure 
of the invariant manifolds in such systems. TM They can be performed by 
choosing a line I t~ of initial conditions outside the invariant set in such a 
way that the line crosses all branches of the stable manifolds of this set. The 
invariant set, which is in fact a hyperbolic saddle, acts as the scattering 
region. The trajectories starting out of I c~ will enter the invariant set and 
eventually leave it after some delay. The closer an initial point is located to 
a branch of the stable manifolds, the longer is the time delay, which 
becomes infinite for initial points located on a manifold. Thus, the stable 
manifolds give rise to a Cantor set of hierarchically organized singularities 
in the time delay function. The union of (closed) subintervals of I ~~ for 
which the time delay is greater than or equal to some finite value n 
provides an n-level approximation of this set. The statistics of scaling 
exponents in the set is equivalent to the statistics of scaling exponents in 
the full invariant set of the dynamical system. 

In the framework of the thermodynamic formalism, a formal "free 
energy" provides the statistics of length scaling exponents. This free energy 
can be derived from the set of singularities of the time delay function as 
well as from the spectrum of Lyapunov exponents of the periodic orbits. In 
hyperbolic systems, the spectrum of Lyapunov exponents and the spectrum 
of length scaling exponents are expected to be equivalent. 

We investigated the free energy for a family of piecewise linear, 
area-preserving maps. Piecewise linear maps are readily used as models 
since they can be iterated quickly on a computer and they are nearly the 
only maps that allow analytical calculations. Well-known 2D examples are 
the baker's transformation (e.g., ret: 5) as a model for Hamiltonian systems 
and piecewise linear maps studied by Lozi ~6) and T61 tTI as models for dis- 
sipative systems. For some parameter values, however, the latter are area- 
preserving. The one-parameter family studied in this paper has been used 
to describe the metastable states of a chain with anharmonic nearest- 
neighbor and harmonic next-nearest-neighbor interactions, ts'9~ Further- 
more, it describes ~I~ the dynamics of a billiard in a gravitational field. ~11~ 
It also occurs as limiting case of a family of smooth maps describing the 



Pruning-Induced Phase Transition 1441 

stable states of an optical memoryJ ~2~ The surprising result of this paper is 
that for this class of piecewise linear 2D maps, the spectrum of Lyapunov 
exponents is not equivalent to the spectrum of length scales obtained by 
the scattering method. In the scattering free energy, an additional scaling 
exponent and a phase transition (in the sense of the thermodynamic for- 
malism) occur, which are not present in the free energy calculated through 
the periodic orbits of the invariant set. Technically this is possible because 
hyperbolicity is violated. "Physically," the occurrence of the anomalous 
behavior of the scattering free energy is related to pruning of orbits in the 
invariant set. 

In Section 2 the family of piecewise linear maps is introduced and the 
free energy is derived from the Lyapunov exponents; it shows a regular 
behavior. Numerical results for the scattering free energy are presented in 
Section 3. They exhibit an additional scaling exponent and a phase transi- 
tion for negative fl values. The theoretical analysis in Section 4 corroborates 
these findings. It reveals that the anomalous effects are closely related to 
pruning and occur for a subset of parameter values that lies dense in the 
interval of the external control parameter. The paper concludes with a 
summary and discussion (Section 5). 

2. T H E  M O D E L  S Y S T E M  

The one-parameter family of maps f studied in the following is defined 
on the whole real plane as 

[ ' x , , + , ' ~  = q-'J\y,,) for l (x, , ,y , , )<~O 

q _ , . . y , .  + (1 - q )  for l ( x , , . y , , ) > O  __q--I 
(2.1) 

where the line l(x,  y) ,  defined as 

l + q  
C: l ( x , y ) = q x + y  2 (2.2) 

separates the two branches o f f  (Fig. 1). After an appropriate linear coor- 
dinate transformation, f corresponds to the area-preserving case of the map 
v,,+ ~ = a v , , -  sign(v,) + bz,,; z,,+ ~ = v,, with parameters a = (q2 + 1 )/q and 
b = -11~3) (following the notation of ref. 7). Stretching and folding occur as 
in the baker's transformation. The map is discontinuous on the line C, 
which we call critical line in analogy to the critical point of 1D maps. Note 
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Fig. 1. The generalized baker's transformation for q = 0.45. The critical line C has slope - q  
and passes through the midpoint P, of the unit square. Its image.f(C) is labeled by C'. The 
left (right) trapezoid drawn by heavy lines is the image of the part of the unit square mapped 
by the lower (upper) branch off  The hatched region is mapped on the parts of the trapezoids 
outside the unit square. This region is forbidden in the sense that all points which eventually 
enter it escape to infinity under forward iteration and do not belong to the chaotic saddle. 

that  such a line of singulari t ies is also present in more  general maps  of 
Lorenz- type systems, cl4~ The piecewise l inear map  given by Eq. (2.1) is 
studied for convenience only. 

The behavior  of f s t rongly depends on the pa ramte r  r/. Wi thou t  loss of 
generality,  the investigation will be restricted to rl ~ (0, 1). F o r  q = 0, the 
map  is not  defined and for rl = 1, it reduces to identity.  Fo r  the other  rl 
values, f has two fixed points,  in (0, 0) and (1, 1 ). Their  stable and unstable 
manifolds (Fig. 2) contain  the hor izonta l  and vertical sides of the unit 
square,  respectively. Inside the square, the manifolds give rise to a chaot ic  
invariant  set generated by homocl inic  and heteroclinic intersections 
(Fig. 3). Both stable and unstable bundles extend to infinity. The bundle of 
stable manifolds is composed  of hor izonta l  s traight  line segments confined 
to a band of width one. Fo r  x ~ oo, the bundle  approaches  the (y  = 1 ) line 
from below and for x - - . -  oo, it approaches  the ( y = 0 )  line from above  
(Fig. 2a). All points  outside the hor izonta l  band escape to y = _+ oo under  
i terat ion o f f  The unstable  manifolds have the same structure in vertical 
direction, and points  outside the cor responding  vertical band escape to 
x = _+ ~ under  f - ~  (Fig. 2b). 
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Fig. 2. The stable (a) and unstable (b) manifolds of the fixed points of the generalized 
baker's transformation shown for the same ~t value as in Fig. 1. Most of the branches of the 
stable manifolds start at the critical line C, most of the branches of the unstable manifolds 
start at its image C. "Ehe heavy line in part (a) is the line of initial conditions I c~ chosen for 
calculating the time delay function, which yields the input data for the thermodynamic for- 
malism. The unstable manifold of (0, 0) in part (b) starts with the left border of the unit 
square (heavy line) and extends up to the line C. The right heavy line (cf. arrow) is the image 
of the part of the left heavy line between the lines C and •. It contains the left border of the 
right trapezoid shown in Fig. 1. For t /> 1/3, this line segment does not completely cross the 
unit square; its lower endpoint with coordinates (1 - r / ,  ( 3 - t l -  J)/2) lies inside the square. 

822/76/5-6-23 
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The upper branch of the unstable manifold of (0, 0) starts with the left 
border of the unit square and extends up to the first image C = f ( C )  of the 
critical line (Fig. 2b). The whole branch is obtained by iterating this first 
piece. For the complete case without pruning (q<  1/3) all line segments 
completely cross the unit square, while for r/> 1/3, for which pruning 
occurs, some segments as the one indicated by the arrow in Fig. 2b start or 
end inside the square. 

The trajectories 

{ - '  
- ~  = " " f  - ( P o ) , f  ( P o ) , P o , f ( P o ) , f ~ 2 ~ ( p o )  "'" } 

of the chaotic invariant set can be labeled by infinite symbol sequences 
- . . a  2a_,Cro~r~a2-.. composed of binary symbols. The symbol ~r~. takes 

the value 0 or 1 depending on whether p~. lies below or above the critical 
line. The coordinates of Pk can easily be recovered from the symbol 
sequence of the orbit. ~8' ,31 In general, not all symbol sequences correspond 
to trajectories. The necessary and sufficient condition for a given sequence 
to be allowed can be written in the form of a self-consistency condition 
a,, = h,,({ai}) that must be satisfied for all n. ~8~ Graphically, this condition 
means that the orbit associated with a point of the invariant set does not 
enter the forbidden region indicated in Figs. 1 and 3. The self-consistency 
condition is fulfilled for all points of a regular 2D Cantor set with scaling 
r/as long as the critical line does not intersect the first-level approximation 
of the Cantor set (Fig. 3a). In this case, the chaotic saddle coincides with 
the embedding Cantor set. For r/> 1/3, the forbidden regions intersect the 
Cantor set: Pruning occurs changing the regular structure of the chaotic 
saddle to an irregular one (Fig. 3b-3d). 

The length scaling properties of a dynamically generated fractal are 
related to the Lyapunov exponents c~ by means of the partition sum 

Z ( " )  IR'~--  + Lyap,t-','- E e x p [ - n f l 2  (Xo) ] ~ e x p [ - - n f l F L y a p ( f l ) ]  (2.3) 
-':0 poinl of 

period n 

The proportionality holds in the limit n--* oo. Since for all orbits the 
positive Lyapunov exponent 2+(Xo) is equal to log r / - ' ,  the partition sum 
immediately reduces to 

(n) ZLyap(fl) = g ( n )  e "[~ log ,, (2.4) 

where M(n) is the number of period-n orbits. In the limit n---, oo, the 
increase of M ( n )  with n is governed by the topological entropy. Conse- 
quently, 

f lFLy,p(  fl ) = --  Ko - fl log q (2.5) 
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Fig. 3. The chaotic saddle of the map (2.1) for different parameter values. The dashed lines 
indicate the lines C (slope - r / )  and C (slope - r / - I ) .  (a) r/=0.3: The saddle forms a 2D 
Cantor set created by a complete grid of intersections of stable and unstable manifolds, i.e., 
all branches of the stable and unstable manifolds completely cross the unit square. The for- 
bidden region forms a horizontal band (hatched area). (b) r/= ( . v ~ - 1 ) / 2  ~-0.366: Pruning 
manifests itself in the creation of additional triangles (double hatched) at the corners of the 
forbidden band (hatched). They are due to the intersection of the critical line and the first- 
level squares of the Cantor set. Note that the structure of the embedding set remains visible. 
The midpoint of the unit square does not belong to the saddle. (c) r/= 1/2: The forbidden 
region is composed of two triangels (double hatched), which touch in the center Pc of the unit 
square. At this parameter value the embedding Cantor set degenerates to the whole unit 
square; the first-level squares touch in Pc. (d) r/= (.4/-5- 1 )/2 ~- 0.618 > 0.5: The two triangles 
(double hatched) of the forbidden region are well separated. 
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The  graph  of f lF( f l )  vs. fl is a s t ra ight  line. The  i nva r i an t  set is an  i r regular  
fractal bu t  no t  a mul t i f rac ta l ;  its topologica l  e n t r o p y  is p r o p o r t i o n a l  to 
its fractal d i m e n s i o n  Do = Ko/iog(r / -~) .  The  dependence  of the topologica l  
en t r opy  on  r / h a s  been invest igated in detail  in ref. 15. 

3. T H E  FREE E N E R G Y  O B T A I N E D  BY S C A T T E R I N G  

The  t ime delay func t ion  has been ca lcula ted  for t rajectories  s ta r t ing  
ou t  of  a specified l ine I I~ of ini t ial  condi t ions .  F o r  I t~ we chose the right 
b o u n d a r y  of the un i t  square ,  which comple te ly  intersects  the b u n d l e  of 
s table  mani fo lds  (Fig. 2a). Let I ~ " ~ c  I ~~ label in tervals  on  which the t ime 
delay func t ion  takes values  greater  t h a n  or  equa l  to n (Fig. 4). By the index 
s, we consecut ively  n u m b e r  these level-n intervals ,  s ta r t ing  with ICo "~ for the 
lowest- ly ing one. All orbi ts  {Pi} s ta r t ing  ou t  of some in terva l  I~ ") 
qual i ta t ive ly  behave  in the same way for at least n i tera t ions:  G i v e n  s and  
i =  1 ..... n, the po in ts  p i = f ~ i ) ( p o )  with p o e  I~ ") are located ei ther  all above  
or  all be low the critical line. The  symbols  ai  = try(s) take the same value for 

n =  2 

y = 0 . 2 5 -  

3 4 5 6 

Io, , i,,, I I:~ T 
I2(5) :~ := 

I (e) 
I~ I I'(5)I I~(8)~ 

i) I (a) I 

Fig. 4. Hierarchical organization of the intervals/.~'~c l ~~ shown for r/= 0.5 and n = 2,..., 6. 
Only the part of 1 ~~ below the intersection of the critical line at y =  1/4 is drawn. The 
successors of I] 4~ and 1~ 5) are dropped. At each level n, the intervals 1~ ") are successively num- 
bered, starting with I0 ~ at the lower end of I ~~ In the complete case, each level-n interval 1~ ") 
splits into two level-(n+l) intervals 1 "+ j~ and P"§ Since pruning is present, some 

( ,~' + I " 

intervals, such as i~4~ give rise to only one interval on the next level. Note that for n >/4, the 
intervals /~ "~ are the shortest intervals at the nth level (labeled 1~'~ in the text). The series of 
1~,'~ = I~ "~ scales with ~12= 2--'. The lengths of the I~" serve as input data for calculating the 
partition sum. 
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all these trajectories. Consequently, the finite subsequence a~(s)...a,,(s) 
(n) can be associated to the interval I s . Note that for k ~< n the kth image of 

an interval I~ 'n is a single straight line segment. 
Through the lengths l.~ "1 of the intervals I~ "~ the scattering process 

gives access to the partition sum Z c''l and hence to a scattering free 
energy t3~ by 

Zl")(fl)= ~ (l.,!"))/~ oc e -'llr(ll) (3.1) 
s 

Again, the proportionality holds asymptotically for large n. We introduce 
the level-n free energy F ~'1 as 

Fl"l(fl) = -n-~ log Zl"~(fl) (3.2) 

Because of the asymptotic scaling of Zl" l(f l)  with n, the approximate free 
energies {F~"~(fl)} tend to F(fl) in the limit n--* oo. A level-n free energy 
F~"~(fl) can equally well be defined by comparing the partition sums at 
level n and n -  k: 

1 z"( /~)  
F~"'(fl) = -~--~ log Z~ , _,,(fl) 

1 [nF~"~(fl) (n k)F("-k~(fl)] (3.3) 
k 

For a given k, the series {F~"l(fl)} do not necessarily converge; but if they 
do, they converge to F(fl). If the series {Ft"~(fl)} displays a period k, as in 
the example treated in Section4.1.3, the series {F~"~(fl)} have the advan- 
tage of converging faster than {F~'n(fl)}. Indeed, the latter contains a term 
proportional to a 1In convergence which drops out in the second line of 
Eq. (3.3) by taking the difference. 

Figures 5a and 5b display the level-n free energies flFl"~(fl) and 
flF~"~(fl) for q =  1/2 and n =  10, 15, 20, 25, and 30. They show that the 
scattering free energy is clearly not a straight line: In both figures, the slope 
for negative fl values is visibly larger than for positive ones. For positive fl 
values the asymptotic behavior, which equals the behavior of FLyap ,  is 
reached in both figures. For negative values of fl, however, only Fig. 5b 
allows a quantitative statement on the asymptotic slope. It supports the 
hypothesis that for f l<f l , .<0 ,  the asymptotic line is given by flF(fl)= 
2fl log 2. This means that the scattering free energy contains an additional 
scaling exponent 2 log 2 not related to the positive Lyapunov exponent 
o f f  The numerical data indicate but do not prove a phase transition at 
fl,. = - K o / l o g  2. This hypothesis will be corroborated in the next section. 
A phase transition at a negative fl value is the signature for the existence 
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Fig. 5. Free energy for t /=0.5 and n =  10, 15, 20, 25, and 30 computed numerically by the 
scattering method. (a) [3F~'~(fl). The asymptotic behavior (solid line) is practically reached for 
positive values of fl but not for the negative ones. (b) flF~"l(fl). Note the excellent convergence 
also for negative values of ft. The dotted vertical line (in both parts) indicates the critical value 
fl, at which the phase transition occurs. 

of a larger scaling exponent for a "small" number of intervals. Since in the 
piecewise linear m a p f t h e  Lyapunov exponents are constant, the additional 
scaling exponent(s) and the related phase transition can only be caused by 
pruning. 

The question arises whether the anomalous behavior of the scattering 
free energy is an exceptional phenomenon due to some special properties at 
~7= 1/2 or whether it is generic for (this and perhaps other families of) 
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piecewise linear maps with pruning. To get some idea, flF(fl) has been 
calculated for slightly different r/ values. The result is very disappointing: 
flF~ "~ gives totally unreliable results for negative ft. Even if the slopes of the 
flF ~''~ are larger for negative fl than for positive ones, it is impossible to 
make any statement on the asymptotic behavior. We show in the next 
section that the anomaly found in the r/-- 1/2 case exists for all parameter 
values at which a homoclinic or heteroclinic orbit of the invariant set 
becomes forbidden. 

4. P R U N I N G - I N D U C E D  SECOND SCALING FACTOR 

4.1. Three Examples 

The results exposed in the previous section indicate that there is a 
second scaling factor different from q in the chaotic invariant set. This 
factor, which is not related to the Lyapunov exponents, causes an increase 
of the slope of flF(fl) for fl < tic. The slope of flF(fl) for fl -~ - oo is deter- 
mined by the shortest intervals at each level. Short intervals can be created 
by pruning. In the complete case without pruning, each level-n interval I,t. "1 
gives rise to two level-(n+ 1) intervals I~ "+~  and tt,,+~) the lengths of =.~"+  I , 

both being equal and by a factor r/shorter than the length of the "parent" 
interval I~ "~. When pruning occurs, however, one of the intervals I~" +tl and 
I~"§  may be much shorter than the other or even missing. If such very s ' + l  

short intervals arise regularly in the n ---, ov limit, this may have the same 
effect in the free energy as a second Lyapunov exponent greater than 
log r/ 1. For three special cases, it will be demonstrated that particularly 
short intervals indeed occur regularly. The sequence of such intervals 
appears to be particularly simple for r/= 1/2. Similar sequences arise when 
an arbitrary heteroclinic orbit is pruned. The typical situation is illustrated 
for the case r / = ( x / ~ - 1 ) / 2  20.366. Another type of sequence with a 
second scaling factor arises for more exceptional n values as ~/= 
(x/"5-  1 )/2 = 0.618. For r/= 1/2, both types coincide. 

4.1.1.  q = 1 / 2 .  In the complete case (i.e., when there is no pruning) 
the nth image of each interval I~ "~ has length 1. When pruning occurs, the 
shortest level-n interval I('! I has an n-fold iterate f~"~tl~'!~ with lengths - - r a m  . ;  ~ - - m m  - 

significantly less than 1. For r/= 1/2, the fl"l(II"~) are displayed in Fig. 6a. 
Being located at the upper border of the unit square (inside the vertical 
ellipse), they arise because the branch at x = 1/2 of the unstable manifold 
(0,0) touches the stable manifold of (1, 1) in P, .  Indeed, there is a 
sequence of line segments converging to this unstable branch. The lower 
ends of these line segments (inside the circle of Fig. 6a) fall into the angle 
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formed by the line C and its image C in P,. .  Being mapped  into the vertical 
ellipse by the lower branch of f i n  the next step, they will be separated from 
the remaining ( long) par ts  of the vertical lines, which are mapped  by the 

( n )  upper  branch o f f .  Table  I shows the symbol  sequence and lengths of Imin' 
For  n 1> 4, the symbol  sequences are of the form (0 )" -2  10. Under  n - 2  
appl ica t ions  of the lower branch o f f ,  the " "1"- -') t,,~ l m a g e s J  (Imi.) ( indicated by 
the hor izonta l  ellipse in Fig. 6a) are at a distance 2-"-" from the left side of 

�9 " (n - 2 1  (hi the unit square. At the next t terat lon,  f (I,n~n) is mapped  by the upper  
branch o f f .  The ( n - 1 ) t h  i terate f I ' -  ' ~ ( I " ' ~ ) i s  located at a distance 2 t - "  
from the midpo in t  of the unit square,  inside the angle formed by C and C 
(inside the circle in Fig. 6a), and its length is 3/2" .  After the nth  i teration, 
finally, the i terate F ( " q l ( " ) l  of the shortest  ievel-n interval has the J x - - m i n  �9 

length 6/2". The interval 1~'i)o is shor ter  by a factor 2" than its n th  image 
I n )  - -  and consequent ly  has the length l m ~ , , -  6 / 2  2". 

The hierarchical  organiza t ion  of the intervals I~'~ with scaling factor 
2 -2  is shown in Fig. 4. The lowest interval Io ~2~ splits into the intervals Io (3) 
and II 3). At the next generat ion,  the interval II 3) splits into a large upper  
part  labeled I~ 4~ and a very small lower part ,  I ]  'u The lat ter  is the shortest  ~ - 

1 4 )  interval on the fourth level and therefore is labeled Ira, ,. In the same way, 
the level-3 interval Io c~ gives rise to I ~  = I~ 5~ in the fifth generat ion,  and 
so on. Thus, a shor t  interval of length 6/2"-" is created regularly at each 
level n t> 4. 

[U,,) The scaling factor 2 2 of the sequence ,_rain } is the cause of the slope 
2 log 2 in the free energy for/~ --* - ~ .  Fo r  sufficiently negative/~ values the 
rapid convergence of the series {F(")(//)} to the asymptot ic  scattering free 
energy F(/3) is due to the constancy of the quot ient  ~") c,,+ ~ Imin/ /mi  n . Figure  6b 
shows the par t  of a b inary  tree conta in ing the 1"9 The nodes correspond 

- - r a i n  ~ 

Fig. 6. Second length scaling factor for q= 1/2. (a) A sequence of short line segments arises 
because the unstable manifold W" of (0, 0) {heavy line segments) touches the lines C and C 
{dashed) in P,. Under (n-2)-fold application off, the lower part of I ~~ approaches the left 
border [unstable manifold of (0, 0)] up to a distance 2 ,+2. The parts inside the horizontal 
ellipse are mapped, by the upper branch off, inside the angle formed by the lines C and C 
(cf. circle). Being mapped to the upper border of the unit square (cf. vertical ellipse) by the 
lower branch of/, these short pieces are separated from the longer, upper parts. Their lengths 
decrease with 2 -", and their preimages on I c~ are the shortest intervals I~',I , = 1~ "~ (cf. Fig. 4). 
The dotted vertical segments inside the horizontal ellipse, the circle, and the vertical ellipse are 
the images f4 ( l~) ,  .f5(1~6~), and .f6(l~m6~), respectively. The nearly horizontal dashed line in 
the horizontal ellipse indicates the upper end off"--'(l~'i~). (b) The part of a binary tree that 
contains the intervals 1~']~ = 1~"( The nodes of the tree correspond to the intervals 11 "b and the 
symbols at the links correspond to the symbols in the finite subsequence a t . . . a , ,  associated 
with the intervals. The 1~ ") are created regularly at each level. However. the interval I~ "+ ~ is 
not connected to the interval 1~ ") by a simple link (no parent~tescendant relation). No 
branching occurs at the node corresponding to an l,~'i~ and at the first n -  3 nodes below it. 
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Table I. S y m b o l  Sequences and Lengths of the 
n clCO~ 1 /2  and  n = l  .. . . .  10"  S h o r t e s t  I n t e r v a l s  Im= . f o r  q = 

n Length of l~m"i~ Symbol  sequence 

I 0.25 0 
2 0.125 10 
3 6.25 x 1 0  -2 110 

4 2.344 x 10--' 0010 
5 5.859 x 10 3 00010 
6 1.465 x 10 3 000010 
7 3.662 x 10 -4 0000010 
8 9.155 x 10 -5 00000010 
9 2.289 x 10 -5 000000010 

10 5.722 • 10 -6 0000000010 

" For  n />4,  the symbol  sequences are of the form (0) " -2  10 and 
the lengths are given by 6 - 2  2,,. 

to the I~ '') and the symbols at the joints to the next symbols in the sequen- 
ces associated with the intervals. The nodes corresponding to the I~'i~ are 
encircled. The structure of the binary tree can be obtained from Fig. 4 by 
rotating the latter clockwise by 90 ~ . Two points are noteworthy: First, the 
shortest level-n interval I~'~ cannot be reached from the interval I('~ -'~ 

- r a m  

at level n - 1  by climbing down the tree: There is no parent--descendant 
In) relation between I ~ ' i n  l ) a n d  - m , n  I1' )" It is not I~'~- *~ that gives rise t o  Imin" 

Second, the branch starting out of the node corresponding to l~'i~ 
continues for n - 2  steps without embranchments. This means that the 
interval I~,'~ will not be divided further until level 2,7 - 2. The length of I~,'~ 
does not change before that level. Thus, the time delay for all trajectories 
starting out of the interval l(m',~ is greater than or equal to the value 2 n -  2. 

Sequences {I~')} of intervals with scaling 112 do start at each level of 
the binary tree. Their number and length are estimated in the Appendix, 
yielding the partition sum [ Eq. (A3) ] 

ZN(fl) ~: exp[KoN(1 + fl/fl,.) ] 

• {C,(fl, Ko)+Cz(fl, Ko)exp[KoN(- l  +fl/fl,.)]} (4.1) 

with fl,. = -Ko / ln  2. The constants C~ and Cz are independent of N. Being 
determined only by the leading term in Eq. (4.1), the asymptotic free 
energy reads [cf. Eq. (A7)] 

= ~ - K o + f l l o g 2  if f l>~-Ko/log2 
(2fl log 2 otherwise (4.2) 

f lF(fl)-  lim flF["~(fl) 
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Thus, for q = 1/2, the scattering free energy displays a phase transition at 
fl,. = - Ko/log 2 < 0, as indicated by the dotted line in Fig. 5. 

4.1.2.  q = ( x / ~ -  1 )[2. For q = 1/2, the sequence of line segments 
with a second scaling factor arises because the unstable manifold of a fixed 
point touches the stable manifold of a fixed point in P,., where the line C 
and its image C intersect. This very particular constellation does not occur 
for typical parameter values. 

For r/< 1/2, the chaotic saddle o f f  is embedded in a 2D Cantor set 
with scaling q (Fig. 3b). The level-k approximation of the Cantor set is 
composed of 4 k squares of linear size r/k (called k-squares). Since the upper 
sides of the k-squares belong to the stable manifold of (1, 1) and the left 
sides to the unstable manifold of (0, 0), all upper left corners correspond to 
heteroclinic intersections. As in the previous subsections, a sequence of line 
segments with a second length scaling arises if a branch of the unstable 
manifold touches the stable manifold without intersecting it. Such a 
situation occurs when the line C intersects the not yet pruned upper left 
corner of a k-square. 

For q=(x /~ -1 ) /2 - - -0 .366 ,  for example, the line C intersects the 
2-square A in Fig. 7a. As in Fig. 6a, the n th iterates of the lowest-lying 
level-n intervals lot"~ c I ~~ approach the left side of the unit square up to a 
distance q"+ 1 (Fig. 7a). The images of their upper parts above the line C 
extend from the line C" up to the (y = 1)-line. Their lower ends (near the 
point Pu~) form a sequence of line segments of length q" running into the 
angle formed by the line C and the upper side of A (instead of the line C 
as in the previous subsection). After two further steps of iteration, when the 
upper side of A is mapped onto the upper side of the unit square, these 
short segments are separated from the rest. Their preimages on the line I I~ 
with symbol sequences (0)" 100 form a sequence of intervals with scaling q2 
(Table II ). 

The part of the binary tree containing the I,~'~ (Fig. 7b) is very similar 
to that for the q = 1/2 case. The I1'9 also occur regularly at each step, but - - m l r l  

one level later than the corresponding intervals in Fig. 6b. As for the case 
t/= i/2, the number of sequences with a second scaling factor can be 
estimated using the reasoning in the Appendix. The scattering free energy 
reads, in analogy with Eq. (4.2), 

~'-- Ko + log q 
/~F(/~) ~c (2/~ l og ,7_  ~ 

- i  if f l  >~ - K o / l o g  q - I (4.3) 
otherwise 

The convergence is uniform as in the q = 1/2 case. Therefore, the func- 
tions F('), which are shown in Fig. 7c, yield the best numerical results. 
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4.1 .3 .  q = ( V / 5 -  ] )/2. For  tl >/1/2, it is possible that P,. is touched 
by the unstable manifold of a periodic orbit. We show that also in such a 
case an argument  analogous to that  for the r /=  1/2 case is possible and 
prove the existence of an additional scaling factor. For  r /=  ( x / ~ - 1 ) / 2  ~- 
0,618, the period-6 orbit  000111 fulfills the above condit ion (cf. Fig. 8a). 
The coordinates of the points of this orbit  are displayed in Table III. 
Two points lie on the x = 1/2-line, one (P) above y = 1/2, the other below. 
Figure 8a displays the first images of the upper  end of the interval 

f2(p~) 
I ~ \\ 

\ 

\ W u 

f-l(P,a )' \\ 
"- \ 

f(P~a) 

0 

\ 
\ 

\ 
\ 

W a 

P I / 

x 

(a) 

i 
I- 

(o) 

1 

Fig. 7. Second length scaling factor for ~1 = ( x / ~ -  1 )/2. (a) The scenario giving rise to short 
line segments is similar to that exposed in Fig. 6a. The unstable manifold W" touches the 
upper left corner P,t of the 2-square A. Parts of the n-fold iterates of I ~~ approach the left 
border of the unit square at the rate ~I". The parts of these images near.f-~(P,,I) are mapped 
inside the angle formed, at P,I, by the line C (dashed) and the upper side of A, which belongs 
to the stable manifold W' of (I, I) {dotted line). Being mapped under twofold iteration off ,  
to the upper border of the unit square near f- ' (P, t  ), the pieces inside the angle are separated 
from the long parts of the line segments. The lengths of the short pieces scale with r/, giving 
rise to the scaling factor t/-' in the sequence of preimages I,~',~, c p0~. (b) Part of a binary tree 
displaying the nodes corresponding to the I~',',~. The tree is similar to the one in Fig. 6b. The 
main difference is that in the present figure, the corresponding intervals of minimal length 
occur one step later. This is due to the fact that W, touches the line C at the corner of a 
2-square [cf. part (a)] while in Fig. 6a, the contact occurs in Pc, which is the comer of a 
l-square. (c) Free energy flF~"(fl) calculated by the scattering method for q = ( . f i -  I )/2 and 
n =  12. 15, 18, 20, and 22. For all fl values, the series of functions converges well to the 
asymptotic function (solid line). The dotted line indicates the value of fl,.. 
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Fig. 7. {Continued) 
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Tab le  II. S y m b o l  Sequences  and Leng th  o f  /~=n for  
q = ( ~  - 1 ) [2 = 0.366 and n = 1 ..... 10" 

n Length of I~'~, Symbol  sequence 

1 3.170 x 10 - j  0 
2 8.494 x 10 - -" 01 
3 3.109• 10 -2 101 

4 1.138• 10 -z  1101 
5 4.165 x 10 -3 11101 
6 8.802 x 10 4 000100 
7 1.179 x 10 -4 0000100 
8 1.580 x 10 -5 000130100 
9 2.117 x 10 -6 000000100 

10 2.836 x 10 -7 0000000100 

For  n >/6, the symbol  sequences are of the form 0"-3100 and the 

lengths are given by ~-" s. 

Io~t~ I ~~ These images approach the periodic orbit in spirals: after 6k + 4 
steps of iteration (k>/0), it starts at the height of the point P, and its 
horizontal distance from this point is ((1-q)/2)r/6k+4. Consequently, 

f (6k+4~( /o~ t )  ) contains a short line segment inside the angle formed by C 
and C, analogously to the short line segments shown in Fig. 6a. The 
sequence of these line segments scales with r/. The only difference is that 
now they arise only at every sixth step (Table IV). Being shorter than the 
(6k+4) th  image by a factor q6k+4 ,  the preimages of these line segments 
give rise to a sequence of I~m6~ +4~ that scales with q2. A reasoning analogous 
to the one given in the Appendix leads again to Eq. (4.3). 

We have argued that very short intervals I~g'i~ are only created on any 
sixth level of the corresponding binary subtree. This has no influence on 
the limiting form of flF(fl), but it is reflected in the convergence properties 
of the {F I''~} and the {F2"~}: the best convergence is obtained by the 
finite-level approximation of the form {F~6"~}, which has been used for 
calculating the numerical results shown in Fig. 8b. 

4.2. General ization 

In this section, we argue that the second length scaling factor and the 
anomalous phase transition at fl, = -Ko / log  r/-~ are present for r/ values 
belonging to a dense subset of the parameter interval. The starting point of 
the following reasoning is the observation that new interdictions arise at 
the special parameter values of the examples: the orbit described by the 
symbol sequence (0) ~ 10(1 ):~ is pruned at q = 1/2; the orbit (0) ~ I00(1 )~ 
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Fig. 8. Second length scaling factor for q = ( x / ~ -  I)/2. (a) The black boxes indicate the 
points of the period-6 orbit with symbol sequence 0~0"O]~. The vertical line at x = 1/2 is a part 
of the unstable manifold of this orbit. It touches the lines C and ~ (dashed) in P,. Under 
,-fold iteration, the interval I0 ~tj c I ~~ (heavy lower part of the right border of the unit square 
extending up to the intersection of C with I ~~ approaches the unstable manifold of the orbit 
in spirals (light vertical lines labeled f") .  After n = 6k + 4 iterations, a part of.f ' ( lo ~t ~) is located 
at the distance ( 1 - q ) t l ' / 2  from the point P. The lower end of this line segment touches ~' 
near P ,  (cf. circle). As in the r /= 1/2 case (cf. Fig. 6a), the piece inside the angle formed by 
C and ~ is separated.from the long upper part of the line segment in the next step. Thus, a 
short piece with length oc r/" arises at each step n = 6k + 5. The nth  preimages form a sequence 
of intervals I~'~ ~ with scaling tl 2 (b) Free energy flF~"~(fl) calculated bv the scattering method m i l l  " . 

for q = (x/"5-  1 )/2 and n = 16, 22, and 28. Owing to the periodicity in the occurrence of the 
l~'~, the function flF 6 converges rapidly for all values of ft. The dotted line indicates the value 
of/~,. 
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Table III. Iterates of the Period-6 Orbit  
w i th  Symbol  Sequence 000111 for  

n = 1 ~ / ~ - 1 ) / 2 - ~  0 .618-  

( l /2,  ~//2 ) 
((1 +) i ) /2 ,  (1 - ) 1 ) / 2 )  

((2 - r/)/2, 1/2) 

(1/2, ( 2 -  ~/)/2} 

( ( 1 - t l ) / 2 ,  (I + r/)/2) 

( ) i l l  i12) 

" T h e  label P refers to the po in t  ind ica ted  in Fig. 8a. 

Table IV. Symbol  Sequences and Lengths of 
the Shortest Intervals for  q = ( ~ j ~ - I ) / 2  = 0.618 

and n = l  ..... 17" 

n Leng th  of  l,~'i~ Symbo l  sequence  

1 1.910 x 10 -1 0 
2 1.180 x 10 - j  10 
3 7.295 x 10 -2  110 
4 3.444 x 10 - 2 0001 

5 4.065 x 10 ~ 00010 

6 2.512 x 10 -~ 000101 
7 1.553 x 10 -3  0001011 

8 9.597 x 10- ' t  00010111 
9 8.654 x 10 - s  000000110  

10 5.348 x 10 -5  1000000110 

11 1.263 x 10 -5  00011100010 

12 7.803 x 10 -6  000111000101 

13 4 . 8 2 2  x 10 -6  0001110001011 

14 2.980 x 10 -6  00011100010111 
15 2.687 x 10 - 7 000000 t I I I00100 

16 1.661 x 10 -7 1000000111100100 

17 3.921 x 10 - s  00011100011100010  

" F o r  n = 6 k -  1, the symbo l  sequences  a re  of the 

000(111000)  k -  ) 10 a n d  their  lengths  are given by 
( 1 - -  )I 2 )( 1 - -  r I ) tl 2 ' , -  3/2. 

fo rm 
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is pruned at r / = j x / ~  - 1 )/2; and the orbit  (000111 )~ 0000(111000) ~ is 
pruned at q = (x/5 - 1 )/2. This coincidence is not fortuitous: the condit ions 
giving rise to a sequence of line segments with a second scaling factor arise 
exactly at parameter  values at which bifurcations cause the interdictions of 
orbits of the invariant  set. 

Pruning  in a smooth horseshoe occurs via inverse saddle node bifur- 
cations, which are related to homoclinic or heteroclinic tangencies. In the 
invariant  set of the piecewise linear maps f,  the bifurcations associated with 
pruning can be considered as degenerate saddle node bifurcation. Indeed, 
Eq. (2.1) is a l imiting case of a family of smooth maps studied in ref. 12, 
which display a chaotic invariant  set obtained by an S-shaped double- 
horseshoe construction. The map f is obtained if the width of the middle 
leg of the double horseshoe shrinks to zero and degenerates to the critical 
line. The corresponding parts of the invariant  set disappear in this limit, 
and the remaining branches of the invar iant  manifolds degenerate to dis- 
connected straight line segments. Accordingly, homoclinic and heteroclinie 
tangencies transform into "contacts," which means that a branch of a 
stable and a branch of an unstable manifold touch without tangency and 
intersection. Bifurcations due to such contacts also occur in the scattering 
system studied in ref. 16. 

Figure 9 displays the type of bifurcation that occurs at r/o = (x/~ - 1 )/2, 
when the end of a segment of the unstable manifold (cf. arrow) touches a 
branch of the stable manifold. It is precisely this point  of contact that is 

W u W u 

\ \  \ \  

\ \ \  
W s \ W s 

�9 \A .4r \ A 
'- -x: - -' - . - \  - 

\ 
\ 

\ C 
W s \ 

\ 
, \ . 

: A \  . . . . .  \ 

Fig. 9. Bifurcation scheme for the bifurcation arising at rio = (x/~- 1 )/2. The three parts of 
the figure illustrate the situation for rt < qo, rt = r/o, and r/> q0. The line segments labeled by 
14'., and W,, respectively, belong to the stable manifold of I 1, 1 ) and to the unstable manifold 
of (0, 0). The vertical.line segment ends at the line •. The manifold W, contains the upper side 
of the 2-square A, and W, contains, for q < qo, the not yet pruned part of the left side of A. 
For r/< .'/o, We and W, intersect; for q > qo, the intersection is lost. At r/= q0, when W,, 
touches W, at the corner P,a of A (arrow), the orbit passing through P,,t becomes forbidden. 
This is the situation in which a series of line segments with a second scaling factor arises (cf. 
Fig. 7a). 

8 2 2 / 7 6 / 5 - 6 - 2 4  
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responsible for the second scaling factor because it gives rise to a sequence 
of short line segments running into the angle formed, at P,~, by C and the 
stable manifold W s (Fig. 7a). Since the branch of W s which contains the 
upper border of the k-square A is mapped onto the upper border of the 
unit square after at most k iterations, the short pieces inside the angle are 
necessarily separated from the remaining longer parts after this number of 
iterations. 

The heteroclinic contact can occur at the upper left corner of any not 
yet pruned k-square. It signifies pruning of a heteroclinic orbit of the form 
(0) ~ a k+~. . -ak(1)  ~- at the corresponding r/ value. The middle sub- 
sequence of length 2k labels the k-square where the heteroclinic contact 
o c c u r s .  

For ~/> 1/2, there is no longer an embedding Cantor set (Fig. 3d). 
However, new interdictions of heteroclinic orbits of the form 
(1) ~ cr k+ j . . .at.(0) ~- still arise at those r/ values, and the subsequence 
a_t.+~...at, still describes a k-squareJ TM Thus, the scenario displayed in 
Fig. 9 also occurs for q > 1/2. Hence, we expect the second length scaling 
factor q2 and the anomalous phase transition at Ko/log r / to  be present for 
all r/ values at which heteroclinic orbits of the invariant set become for- 
bidden. If, however, k is larger than about 20 or 30, the convergence can 
no longer be observed numerically. This is why the numerical calculations 
of F~"~(fl) and F"~(fl) did not allow any statement about the asymptotic 
free energy for r/ values slightly different from 1/2, where the newly pruned 
heteroclinic orbit, if there is any, presumably exhibits large values of k. 

Numerical results for the parameter dependence of the topological 
entropy obtained by investigating periodic orbits ~15~ strongly indicate 
that Ko(q) is strictly monotonically decreasing. Hence, new interdictions 
occur at least in a dense subset of the parameter interval [1/3, l] .  Since 
heteroclinic orbits as well as periodic orbits lie dense in the chaotic 
invariant set, new interdictions of heteroclinic orbits are expected to occur 
also in a dense subset of the parameter interval. For the parameter values 
of this subset, the free energy has the slope 2 log q ~ for fl < fl,. < 0, and an 
anomalous phase transition occurs at f l , - -Ko/log r/. 

Finally, notice that the situation treated in Section 4.1.3 corresponds 
to a somewhat different type of bifurcation. For r/-- (x//-5- l )/2, the contact 
occurs between the end of an unstable branch and the end of a stable 
branch. Both manifolds belong to the period-6 orbit. In such a case, we 
expect an anomalous scaling only if the contact takes place in the center P, 
of the unit square. The reason is that the stable manifold of a periodic orbit 
is not mapped onto the border of the unit square. Therefore, the inter- 
section of C and t~ is needed to separate the short pieces from the longer 
parts, and these lines always intersect in P,. The bifurcation caused by the 
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contact of two ends of straight line segments at P,. is not generic. Indeed, 
even for 1/2 < ~1 < 1, there are whole subintervals for which P,. is not a 
point of the chaotic saddle and therfore an anomalous behavior of the 
scattering free energy caused by this kind of bifurcation is not expected. 

5. D I S C U S S I O N  A N D  S U M M A R Y  

The thermodynamics of the geometric properties of a chaotic saddle 
has been investigated for a class of piecewise linear, area-preserving maps. 
By a numerical scattering experiment, we calculated the time delay function 
for orbits starting out of a line I I~ crossing the stable manifolds of the 
saddle. The partition sum has been obtained by means of the lengths of 
level-n intervals, for which the delay time takes at least the value n. For 
appropriate values of q, the scattering free energy obtained in this way 
displays a second scaling exponent for fl < fl,. < 0 and a phase transition 
at fl,.= Ko/log q. This happens in spite of the fact that the Lyapunov 
exponents of these maps are constant everywhere. 

The fact that an additional scaling exponent and a phase transition are 
present in the scattering free energy even though they do not occur in the 
free energy obtained by summing over the periodic orbits indicates that 
these two quantities need not to be identical. Indeed, the theoretical 
analysis in Section 4 shows that both features are solely due to pruning. 
They occur when a branch of an unstable manifold touches a branch of a 
stable manifold without intersecting it. This contact between invariant 
manifolds (which is not a tangency for these maps) has the effect that on 
the line of initial conditions, a sequence of particularly small intervals I,~'i~ 
arises in the course of iteration. While in general the lengths of the level-n 
intervals scale with q, the lengths of the I,~'i~, scale with q2. This gives rise 
to the second scaling exponent in the free energy. The phase transition 
occurs because the number of intervals with the anomalous scaling factor 
increases slower than e ~o''. 

Obviously, there is no difference between the scattering free energy 
and the spectrum of Lyapunov exponents when the critical line passes 
through the gaps of the embedding Cantor set without touching any point 
of the invariant set. In such a case, which may arise when the critical line 
is displaced while q is fixed to some value less than 1/3, the map is still 
hyperbolic in whole subintervals of the parameter interval, even in the 
presence of pruning. In these subintervals, no new interdictions arise; this 
results in plateaus in the topological entropy as a function of the displace- 
ment of the critical line. 1~7~ In the present setting, however, the critical line 
is fixed symmetrically with respect to the invariant set and the eigenvalue 
~l of the map is taken as control parameter. There is strong numerical 
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evidence that in this case, new interdictions of orbits occur on a dense sub- 
set of the parameter interval [1/3, 1]. 1151 

Interdictions are caused by inverse bifurcations. This means that some- 
where in the invariant set, homoclinic and heteroclinic manifolds touch 
without intersecting. Bifurcations in the invariant set imply the breakdown 
of hyperbolicity. This also holds for maps of the form (2.1), even though 
there is no effect on the Lyapunov exponents. Thus, the anomalous length 
scaling factor and the anomalous phase transition in the scattering free 
energy indicate that at the corresponding parameter values bifurcations 
and consequently new interdictions of orbits occur in the chaotic invariant 
set. 

The occurrence of a phase transition at negative fl values is similar to 
what happens for the logistic map/181 In that case, however, the second 
scaling factor is not due to pruning, but to the slope of the logistic map at 
x = 0; the shortest interval at level n is contained in the shortest interval at 
level n -  1; in the binary tree, both intervals are directly related by a link. 
In the present case, the intervals It '9 which are organized on a binary tree 

- - m l n ,  

as shown in Fig. 6b, are not related by a parent~lescendant relation. The 
series ~ l t ' !  ~ ~ converges, in the limit n -~ ~ ,  to a point outside all the Imi o. i - - m i l l  J 

This is why this series can exhibit a length scaling exponent not related to 
the Lyapunov exponents of the dynamical system. 

For maps with the same kind of singularity as the one present in 
Eq. (2.1) (Lorenz-type mapsl'4>), an anomalous phase transition is also 
expected to exist. The essential ingredient seems to be the fact that the 
bifurcation is degenerate with a missing stable branch. The degeneracy of 
the inverse saddle node bifurcation is closely related to the existence of a 
line of singularities in the map. As a consequence, the invariant manifolds 
are degenerated to disconnected line segments. In such a situation no KAM 
tori are associated with pruning. KAM tori would perhaps prevent the 
occurrence of the anomalous scaling and the phase transition. However, 
even when a line of singularities exists, the anomalous scaling exponent 
may, in a repellor with multifractal properties, be masked by the spectrum 
of Lyapunov exponents if the anomalous scaling exponent is less than the 
maximal Lyapunov exponent. 

A P P E N D I X .  E V A L U A T I O N  OF THE PARTIT ION S U M  

In order to evaluate the partition sum, we estimate the number and 
the length of intervals with the anomalous length scaling ~/2. The reasoning 
is displayed for the q = 1/2 case. For the other cases, it goes along the same 
line and yields the same results. 

There is a series { I~'~ } of shortest intervals with length 6/2", which is 
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displayed in Fig. 4. The intervals I~'i~ remain unchanged (survive) from 
level n to level 2n - 2. This is indicated in the binary tree shown in Fig. 6b: 
The nodes corresponding to I~'i~ and its descendants up to level 2 n - 3  
have no branching. To the series ( I  t'~ ~-mi,, we associate a subtree which con- 
sists of  the part shown in Fig. 6b together with the parts without branching 
related to the 1~ Notice that such a subtree can spring off at each level - - rn l t l "  

k of the whole binary tree. The length of a short interval that is created at 
the nth level of a k th-order  subtree [i.e., at the (n + k -  1 )th level of the 
main tree] has the length 6/2"-" + k-~. This interval remains unchanged from 
level n + k - 1 to level 2n + k - 3. 

To give an upper limit for the number  of intervals with scaling 2-2,  we 
assume that every level-k node with branching that does not belong to a 
lower-order subtree gives rise to a new kth-order  subtree. On the average, 
the number  of level-k nodes with branching is governed by the topological 
entropy and evaluates to (e K~ 1) e K~ 1). From this number, we must 
subtract one node for each subtree arising at level k '  < k. (The other level-k 
nodes of the subtree have no branching or may serve as origin for a new 
subtree.) The subtraction has an influence only on the constant prefactor. 
The number  of new subtrees arising at level k is still proport ional  to e kK~ 

Count ing the intervals, one must distinguish two cases. For  order-n 
intervals with 4 <<. n <~ N/2, the intervals arising in low-order subtrees do not 
survive up to level N. Thus, only kth-order  subtrees satisfying the relation 
N -  2n + 3 ~< k ~< N -  n + 1 have to be taken into account. Summing over 
the values of n and the allowed values of k, we get the contribution 

N/2 N - - n +  I 

A oc 6 p ~'. ~'. 2-(2"+k)P'er~ (AI)  
n = 4  k = N - - 2 n + 3  

For (N+2)/2<<.n<~N, all values of k between 1 ..... N - n +  l are allowed. 
Thus, the second contribution reads 

N N - - n + 1  

B w_ 6 a ~" ~ 2-(2n+k)#.e K~ (A2) 
n = N / 2 + l  k = l  

The level-N partition sum ZCm(fl) is the sum of both terms. Summing up 
the geometrical series in Eqs. (A1) and (A2) and regrouping the terms 
yields 

ZU(fl)'oc expEKoN(1 + fl/fl,.) ] 

x {C~(fl, Ko)+C2(fl, K o ) e x p [ K o N ( - l  +fl/fl,.)]} (A3) 

with a prefactor independent of fl and N. The "temperature" takes the 
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value f l , . = - K o / l o g 2 < 0 ,  and the factors C~(/3, Ko)  and C2(fi ,  Ko)  are 
given by 

(3/2) ~ e-3~'o 
C1(/3, Ko) - eh.O(e_Ko(l + I~/K ~ __ 1 ) 

{2--Pe--  3K" 2-- 3P 
X \-~e_2h.----------- ~ 1 --e---k~~ 

(3/2)/~ 
C2(/3, Ko) - eKO( e _ ~.(,(~ + a/t~, ) _ 1 ) 

(A4) 

(AS) 

I I ) (A6) 
x " l - e  Ko~ p//~,) 1 _ 4 - ~  

Note that at constant N, the factors C~ and C_, diverge like I/3-/3, I ~ for 
/3 --+/3,. Thus, the limits N ~ oo and/3 --*/3, do not interchange. In the limit 
N--* co, which has to be taken at constant /3, we obtain 

(A7) 

f C , ( f l ,  K o ) e x p [ K o N ( l  +fl / /3, . )]  if /3>/3,. 

Z ( / 3 ) = ] � 8 9  N )  if /3=/3,. 

[.Cz(fl,  Ko)  e x p [ 2 K o N  fl/fl,.] if fl </3,. 

Taking into account only the leading term for the free energy, one 
immediately gets Eq. (4.2). 
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